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Upon first exposure to a
newborn, male rats (Rattus
norvegicus) attack and con-

sume them. However, repeated
exposure to young pups elicits
parental behavior (e.g. licking,
retrieval and a nursing posture
over the pups) over a period of
several days. During this transfor-
mation from killer to caregiver,
hormones involved in maternal
behavior do not change and
endocrine manipulations, includ-
ing castration, have little effect.
Thus, initially, hormones did 
not appear to be involved in 
mammalian paternal behavior1.

Instead, evidence supporting
a role for hormones in both the
onset and the maintenance of
male parental behavior has come
consistently, but slowly, from
studies of naturally paternal
species. Direct paternal care is
rare in mammals but is found 
in some species; for example, 
callitrichid primates that bear twin
offspring (Callithrix and Saguinus
spp.), and rodents, including prairie voles (Microtus
ochrogaster), California mice (Peromyscus californicus),
Mongolian gerbils (Meriones unguiculatus) and Djungarian
hamsters (Phodopus campbelli). In each case, both field
and laboratory data support a reproductive payoff to 
the paternal male, in terms of increased female fertility 

and improved offspring survival
and/or growth2,3. Paternal behav-
ior includes all aspects of mater-
nal behavior except lactation
(and at least one bat species is
capable of lactation4) and can
include midwifery during the
birth5 (Fig. 1). It also appears to
involve activating existing neural
circuits leading to maternal
behavior.

Sexual dimorphism?
Hormones, including estradiol,
progesterone, testosterone, corti-
sol, prolactin, vasopressin and
oxytocin, are involved in the onset
and maintenance of mammalian
maternal behavior (Table 1).
Except for a small number of
genes on the Y chromosome,
male and female mammals have
the same DNA. Sexual dimor-
phism in neuroendocrine and
endocrine pathways is usually
minimal6, except for neuro-
endocrine circuits leading to
stereotypical sexual behavior.

Thus, rather than selecting for novel pathways to elicit
paternal behavior, laws of parsimony suggest that natural
selection should activate pre-existing maternal neural and
endocrine circuits. Current hypotheses assume that this
homology will extend to neuroendocrine circuits involved
in paternal and maternal behavior 6–8.

Behavioral endocrinology of
mammalian fatherhood

Katherine E. Wynne-Edwards and Catharine J. Reburn

Mammalian fatherhood involves a 
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experience. In spite of previous

assumptions to the contrary, 
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Hormone changes
associated with 
paternal behavior
No current studies provide
causal proof of hormone–
behavior relationships in the
control of natural paternal
behavior (Box 1). However,
causal proof has been offered
in the rat and correlational
evidence for homology with
maternal behavior in natu-
rally paternal species is strong
(Fig. 2). Male laboratory rats
are not normally parental 
and are not descended from
naturally parental ancestors.
Nevertheless, the castrated
male rat has been success-
fully used as a model for
maternal behavior in the ab-
sence of pregnancy and lac-
tation. Lesions in key hypo-
thalamic nuclei (e.g. the medial
preoptic area) disrupt, and
hormone implants elicit, male
maternal behavior7,9. Unfor-
tunately, neither estradiol nor
progesterone concentrations
have been reported for males
of any naturally paternal
species.

In Mongolian gerbils and
Djungarian hamsters, testos-
terone concentrations rise before the birth (presumably
associated with the postpartum mating), decline sharply
by the day after the birth and recover over the next few
days8,10. In female mammals, testosterone concentrations
also increase soon after the birth and are associated with
the onset of maternal aggression to defend her newborn
offspring11.

Prolactin has been studied in males because of its role
in mammalian maternal behavior and its importance for
the expression of paternal behavior in birds (Box 2). In

1982, Dixson and George reported that male common mar-
mosets (Callithrix jacchus) carrying their twin offspring
had prolactin concentrations that were fivefold higher
than concentrations in males without offspring12. Seven
years later, Gubernick and Nelson reported that male
California mice had prolactin concentrations as high as
their lactating female partners soon after the birth13. In
recent years, prolactin concentrations have been shown 
to increase between pairing and early fatherhood in the
Mongolian gerbil10, the Djungarian hamster8 and the 
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Fig. 1. Male midwifery in Djungarian hamsters (Phodopus campbelli ). A sequence of four images drawn from a 
20 s sequence (times are shown on each frame) during the birth of the second pup in a Djungarian hamster litter.
In each image, the male is on the left and the female is on the right. (a) The pup has crowned and is being licked
by the female; it is still dark purple in color and does not have an open airway. The first pup in the litter is visible in
the foreground, partially covered by bedding. The male is approaching from the rear. (b) The male is tugging on the
head of the crowned pup and is thus mechanically assisting in the birth. (c) The pup is born and the male is clear-
ing the nares of membranes. The pup has just flushed to the bright red color that indicates hemoglobin oxygen-
ation. The female is engaged in anogenital grooming and pulling on the umbilicus. (d) The female leaves the nest
area as she pushes to deliver the placenta. The male is left alone with the neonate and continues to lick and sniff
it, removing all membranes, blood and amniotic fluid. Photograph by J. Jones and K.E. Wynne-Edwards.

Table 1. Hormones involved in mammalian maternal behavior

Hormone Effects on maternal behavior Measurements in paternal males Refs

Testosterone An increase following parturition facilitates maternal aggression. Mongolian gerbil, Djungarian hamster 8,10,11,22
and human

Estradiol Rises to a peak at parturition then sharply declines following birth. None 34,35
The prepartum rise is important for the onset of maternal behavior.

Progesterone Withdrawal before the birth facilitates the onset of maternal behavior. None 34,35

Cortisol Decreases with pair bond formation and increases before the birth. Djungarian hamster, cotton-top tamarin 8,14,16
Its function is not known. and human

Prolactin Production and release are facilitated by other hormones implicated in California mouse, Mongolian gerbil, 8,10,13–15,
control of parental care (eg. estradiol, oxytocin and vasopressin). Djungarian hamster, cotton-top tamarin, 22,36–38
Hypothalamic administration before the birth facilitates the onset of common marmoset and human
maternal behavior.  

Vasopressin Increases social affiliation. Facilitates prolactin release. Prairie voles and deermice 16–18,39,40

Oxytocin Facilitates prolactin release. Intracerebral ventricular injections facilitate, Not correlated in California mice and 16,17,20
and agonists delay, the onset of maternal behavior. prairie voles
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cotton-top tamarin (Saguinus oedipus)14. In the tamarin,
prolactin concentrations in experienced fathers never
return to the lower concentrations typical of inexperi-
enced males14. In the marmoset, alloparents have similar
prolactin increases15. This pattern is not seen in Siberian
hamsters8 (Phodopus sungorus), which only interact with
young pups late in the breeding season and are not pater-
nal in the laboratory3,5.

In mammals, glucocorticoid hormones are involved in
the establishment of social bonds in mated pairs and might
sensitize females to stimuli involved in maternal imprint-
ing (bonding to the infant)16. In male Djungarian hamsters,
but not Siberian hamsters, cortisol concentrations are

elevated on the day immediately before the birth8. In
cotton-top tamarins, cortisol is also elevated in first-time
fathers relative to experienced fathers14. In tamarins, 
in both species of hamster and in monogamous prairie
voles, pairing reduces circulating corticosteroid concen-
trations8,14,16.

Oxytocin and vasopressin are intimately involved in affili-
ative behaviors, such as pair-bond formation16,17. They also
inhibit other behaviors, such as infanticide, that are inappro-
priate in a family group. Social affiliation is probably a pre-
requisite for paternal behavior in mammals. As such, oxy-
tocin and vasopressin are candidates for priming and/or
facilitating social interactions with offspring. However, at
present, neither appears to play a direct role in the initiation
of paternal behavior. Vasopressin is broadly correlated with
the extent of paternal behavior in deermice (Peromyscus
spp.)18 and voles (Microtus spp.)17, but immunoreactive
vasopressin fibers are not essential for paternal behavior in
adult prairie voles19. Oxytocin is correlated with sociality16

but peripheral oxytocin concentrations are unchanged in
California mice before and after becoming fathers20.

Other hormones are likely to join this list in the near
future. For example, prostaglandin F2 alpha elicits the full
range of stereotypical birth behaviors in both the male and
the female tammar wallaby (Macropus eugenii)21.

Men becoming fathers
Recent data suggest that there will also be a biological basis
for ‘involved’ fatherhood in men22 (Box 3). Both men and
women had significantly higher prolactin and cortisol con-
centrations before the birth, and lower sex steroid concen-
trations immediately after the birth. Men reporting preg-
nancy symptoms or reporting strong emotional responses
to standardized stimuli from neonates also had significantly
higher prolactin concentrations. Further studies investi-
gating the changes within individual men, the effects of cir-
cadian rhythm disruption and the role of prolonged physi-
cal contact during pregnancy (see later) are indicated.

Ecologically relevant stimuli
It is possible that males in species with highly developed
paternal repertoires offer paternal behavior indiscrimi-
nately to all dependent young animals, but it is unlikely. In
recent years, evidence that behavioral fathers are often
not the genetic father of the offspring they nurture and pro-
tect has stimulated discussion about the conditions essen-
tial for the expression of paternal care, and the probable
evolution of mechanisms to detect cuckoldry23. Social and
environmental stimuli involved in the timing and express-
ion of parental behavior should be sensitive to the behav-
ioral ecology of each species.

For females, offspring might be born at a time of social
upheaval, when their survival prospects are extremely lim-
ited; they might compromise the ability of a female to con-
tinue reproductive investment in older offspring; they
might have poor health; or they might be born into an envi-
ronment where food is suddenly scarce24. For males, the
absence of stimuli from the pregnant female (5 failure of
mate guarding25) should decrease the probability of male
paternal behavior. Cues from the female are important for
the onset and maintenance of paternal care in California
mice26, although considerable interindividual variability in
the expression of paternal behavior remains27.

Chemical signals from the pregnant female, whether
transmitted by air, physical contact or ingestion, are obvi-
ous candidates that could influence the later expression of
paternal behavior – the same might also be true for
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Box 1. Establishing causality in behavioral 
endocrinology

An ovariectomized (castrated) female rat will hold the lordosis posture,
which is essential for mating, if she is given two days of priming treatment
with estradiol followed by a bolus injection of progesterone. Such direct
causality in hormone–behavior relationships has made mating behavior an
appropriate focus for research, but it is not representative of most hor-
mone–behavior relationships. Typically, responses to a standardized hor-
monal stimulus depend upon reproductive condition, social status and the
social context of the stimulus41,42, and most hormone-dependent behavior
can be elicited in the complete absence of hormones. Instead of forcing a
behavior to be shown, hormones alter thresholds, increasing or decreasing
the probability that a behavior will be shown in response to a standard stimu-
lus – they also alter the intensity of the behavior shown. Behavior is also sen-
sitive to a wide range of social and environmental stimuli, some of which act
during development to influence behaviors expressed in adulthood33. Chang-
ing the expression of hormone receptors39, altering imprinted genes43 and
mutational changes in gene activation pathways44 will also modify hor-
mone–behavior relationships. As a result, we can eventually expect a wide
range of hormones to be ‘causally’ linked to a complex social behavior, such
as parental behavior.

Fig. 2. Schematic endocrinology of fatherhood. Changes in the concen-
tration of hormones implicated in the control of mammalian paternal behavior
(Table 1). The generalized pattern represents results from studies in natu-
rally paternal species and our assumption that the underlying neuro-
endocrine control of parental behavior will be homologous in males and
females. Changes are relative to unpaired adult males. Question marks (?)
indicate gaps in our current understanding.
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humans. Human cultures with extensive paternal care also
have prolonged contact within a pair-bond28, hormone
concentrations within couples are correlated22 and at least
one human pheromone has been found29.

Close proximity between a male and a pregnant female
creates additional opportunities to evoke hormonal
changes in the male. For example, when male Djungarian
hamsters midwife the delivery of their young they consume
amniotic fluid and at least 50% of the placental tissue5. Both
amniotic fluid and placenta are potent sources of hor-
mones30, and they function in individual recognition and
mother–infant bonding31.

Of course, it is also possible that the stimuli needed for
the onset of paternal behavior are temporally displaced
from the birth. Appropriate reduction in infanticidal
behavior of male mice involves an interval timer activated
during mating32, many of these species have opportunities
for alloparental experiences with siblings born while they
are still juveniles15,33, and pair-bond formation has neural
and endocrine consequences that might facilitate paternal
behavior16. Experimental tests of causal hypotheses link-
ing hormonal changes (including temporally displaced
hormonal changes) to paternal behavior are urgently
required.

Conclusions
Recent progress in understanding the behavioral endo-
crinology of mammalian fatherhood embraces the hypoth-
esis that naturally occurring paternal behavior will be
homologous with maternal behavior. It is anticipated that
a wide variety of hormones are involved in paternal behav-
ior. Early results show great promise that a biological basis
for involved fatherhood will be found and that including
the human animal will capture a wide audience. We see
this potential as an opportunity to better understand
maternal behavior, by studying parental behavior in the
absence of pregnancy and lactation; an opportunity to
explore the modulatory interactions between hormones
and behavior in a relevant social context; and an opportu-
nity to biologically validate the experiences of involved
fathers.
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