Behavioral endocrinology of mammalian fatherhood

Katherine E. Wynne-Edwards and Catharine J. Reburn

Upon first exposure to a newborn, male rats (Rattus norvegicus) attack and consume them. However, repeated exposure to young pups elicits paternal behavior (e.g., licking, retrieval and a nursing posture over the pups) over a period of several days. During this transformation from killer to caregiver, hormones involved in maternal behavior do not change and endocrine manipulations, including castration, have little effect. Thus, initially, hormones did not appear to be involved in mammalian paternal behavior.

Instead, evidence supporting a role for hormones in both the onset and the maintenance of male parental behavior has come consistently, but slowly, from studies of naturally paternal species. Direct paternal care is rare in mammals but is found in some species; for example, callitrichid primates that bear twin offspring (Callithrix and Saginus spp.), and rodents, including prairie voles (Microtus ochrogaster), California mice (Peromyscus californicus), Mongolian gerbils (Meriones unguiculatus) and Djungarian hamsters (Phodopus campbelli). In each case, both field and laboratory data support a reproductive payoff to the paternal male, in terms of increased female fertility and improved offspring survival and/or growth. Paternal behavior includes all aspects of maternal behavior except lactation and can include midwifery during the birth. Thus, it appears to involve activating existing neural endocrine pathways leading to maternal behavior.

Sexual dimorphism? Hormones, including estradiol, progesterone, testosterone, cortisol, prolactin, vasopressin and oxytocin, are involved in the onset and maintenance of mammalian paternal behavior (Table 1). Except for a small number of genes on the Y chromosome, male and female mammals have the same DNA. Sexual dimorphism in neuroendocrine and endocrine pathways is usually minimal, except for neuroendocrine circuits leading to stereotypical sexual behavior.

Thus, rather than selecting for novel pathways to elicit paternal behavior, laws of parsimony suggest that natural selection should activate pre-existing maternal neural and endocrine circuits. Current hypotheses assume that this homology will extend to neuroendocrine circuits involved in paternal and maternal behavior.
Hormone changes associated with paternal behavior

No current studies provide causal proof of hormone–behavior relationships in the control of natural paternal behavior (Box 1). However, causal proof has been offered in the rat and correlational evidence for homology with maternal behavior in naturally paternal species is strong (Fig. 2). Male laboratory rats are not normally parental and are not descended from naturally parental ancestors. Nevertheless, the castrated male rat has been successfully used as a model for paternal behavior in the absence of pregnancy and lactation. Lesions in key hypothalamic nuclei (e.g. the medial preoptic area) disrupt, and hormone implants elicit, male maternal behavior. Unfortunately, neither estradiol nor progesterone concentrations have been reported for males of any naturally paternal species.

In Mongolian gerbils and Djungarian hamsters, testosterone concentrations rise before the birth (presumably associated with the postpartum mating), decline sharply by the day after the birth and recover over the next few days. In female mammals, testosterone concentrations also increase soon after the birth and are associated with the onset of maternal aggression to defend her newborn offspring.

Prolactin has been studied in males because of its role in mammalian maternal behavior and its importance for the expression of paternal behavior in birds (Box 2). In 1982, Dixson and George reported that male common marmosets (Callithrix jacchus) carrying their twin offspring had prolactin concentrations that were fivefold higher than concentrations in males without offspring. Seven years later, Gubernick and Nelson reported that male California mice had prolactin concentrations as high as their lactating female partners soon after the birth. In recent years, prolactin concentrations have been shown to increase between pairing and early fatherhood in the Mongolian gerbil, the Djungarian hamster and the

Table 1. Hormones involved in mammalian maternal behavior

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Effects on maternal behavior</th>
<th>Measurements in paternal males</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>An increase following parturition facilitates maternal aggression.</td>
<td>Mongolian gerbil, Djungarian hamster and human</td>
<td>8,10,11,22</td>
</tr>
<tr>
<td>Estradiol</td>
<td>Rises to a peak at parturition then sharply declines following birth. The prepartum rise is important for the onset of maternal behavior.</td>
<td>None</td>
<td>34,35</td>
</tr>
<tr>
<td>Progesterone</td>
<td>Withdrawal before the birth facilitates the onset of maternal behavior.</td>
<td>None</td>
<td>34,35</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Decreases with pair bond formation and increases before the birth. Its function is not known.</td>
<td>Djungarian hamster, cotton-top tamarin and human</td>
<td>8,14,16</td>
</tr>
<tr>
<td>Prolactin</td>
<td>Production and release are facilitated by other hormones implicated in control of parental care (e.g. estradiol, oxytocin and vasopressin). Hypothalamic administration before the birth facilitates the onset of maternal behavior.</td>
<td>California mouse, Mongolian gerbil, Djungarian hamster, cotton-top tamarin, common marmoset and human</td>
<td>8,10,13–15, 22,36–38</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>Increases social affiliation. Facilitates prolactin release.</td>
<td>Prairie voles and deermeice</td>
<td>16–18,39,40</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>Facilitates prolactin release. Intracerebral ventricular injections facilitate, and agonists delay, the onset of maternal behavior.</td>
<td>Not correlated in California mice and prairie voles</td>
<td>16,17,20</td>
</tr>
</tbody>
</table>

Fig. 1. Male midwifery in Djungarian hamsters (Phodopus campbelli). A sequence of four images drawn from a 20 s sequence (times are shown on each frame) during the birth of the second pup in a Djungarian hamster litter. In each image, the male is on the left and the female is on the right. (a) The pup has crowned and is being licked by the female; it is still dark purple in color and does not have an open airway. The first pup in the litter is visible in the foreground, partially covered by bedding. The male is approaching from the rear. (b) The male is tugging on the head of the crowned pup and is thus mechanically assisting in the birth. (c) The pup is born and the male is clearing the nares of membranes. The pup has just flushed to the bright red color that indicates hemoglobin oxygenation. The female is engaged in anogenital grooming and pulling on the umbilicus. (d) The female leaves the nest area as she pushes to deliver the placenta. The male is left alone with the neonate and continues to lick and sniff it, removing all membranes, blood and amniotic fluid. Photograph by J. Jones and K.E. Wynne-Edwards.
cotton-top tamarin (Saguinus oedipus)14. In the tamarin, prolactin concentrations in experienced fathers never return to the lower concentrations typical of inexperienced males14. In the marmoset, alloparents have similar prolactin increases15. This pattern is not seen in Siberian hamsters8 (Phodopus sungorus), which only interact with young pups late in the breeding season and are not paternal in the laboratory15.

In mammals, glucocorticoid hormones are involved in the establishment of social bonds in mated pairs and might sensitize females to stimuli involved in maternal imprinting (bonding to the infant)16. In male Djungarian hamsters, but not Siberian hamsters, cortisol concentrations are elevated on the day immediately before the birth8. In cotton-top tamarins, cortisol is also elevated in first-time fathers relative to experienced fathers14. In tamarins, in both species of hamster and in monogamous prairie voles, pairing reduces circulating corticosterone concentrations8,14,16.

Oxytocin and vasopressin are intimately involved in affiliative behaviors, such as pair-bond formation16,17. They also inhibit other behaviors, such as infanticide, that are inappropriate in a family group. Social affiliation is probably a prerequisite for paternal behavior in mammals. As such, oxytocin and vasopressin are candidates for priming and/or facilitating social interactions with offspring. However, at present, neither appears to play a direct role in the initiation of paternal behavior. Vasopressin is broadly correlated with the extent of paternal behavior in deer mice (Peromyscus spp.)18 and voles (Microtus spp.)15, but immunoreactive vasopressin fibres are not essential for paternal behavior in adult prairie voles19. Oxytocin is correlated with sociality16 but peripheral oxytocin concentrations are unchanged in California mice before and after becoming fathers20.

Other hormones are likely to join this list in the near future. For example, prostaglandin F\textsubscript{2} alpha elicits the full range of stereotypical birth behaviors in both the male and the female tammar wallaby (Macropus eugenii)21.

Men becoming fathers

Recent data suggest that there will also be a biological basis for ‘involved’ fatherhood in men22 (Box 3). Both men and women had significantly higher prolactin and cortisol concentrations before the birth, and lower sex steroid concentrations immediately after the birth. Men reporting pregnancy symptoms or reporting strong emotional responses to standardized stimuli from neonates also had significantly higher prolactin concentrations. Further studies investigating the changes within individual men, the effects of circadian rhythm disruption and the role of prolonged physical contact during pregnancy (see later) are indicated.

Ecologically relevant stimuli

It is possible that males in species with highly developed paternal repertoires offer paternal behavior indiscriminately to all dependent young animals, but it is unlikely. In recent years, evidence that behavioral fathers are often not the genetic father of the offspring they nurture and protect has stimulated discussion about the conditions essential for the expression of paternal care, and the probable evolution of mechanisms to detect cuckoldry23. Social and environmental stimuli involved in the timing and expression of paternal behavior should be sensitive to the behavioral ecology of each species.

For females, offspring might be born at a time of social upheaval, when their survival prospects are extremely limited; they might compromise the ability of a female to continue reproductive investment in older offspring they might have poor health; or they might be born into an environment where food is suddenly scarce24. For males, the absence of stimuli from the pregnant female (= failure of mate guarding25) should decrease the probability of male paternal behavior. Cues from the female are important for the onset and maintenance of paternal care in California mice26, although considerable interindividual variability in the expression of paternal behavior remains27.

Chemical signals from the pregnant female, whether transmitted by air, physical contact or ingestion, are obvious candidates that could influence the later expression of paternal behavior – the same might also be true for

Box 1. Establishing causality in behavioral endocrinology

An ovariectomized (castrated) female rat will hold the lordosis posture, which is essential for mating, if she is given two days of priming treatment with estradiol followed by a bolus injection of progesterone. Such direct causality in hormone–behavior relationships has made mating behavior an appropriate focus for research, but it is not representative of most hormone–behavior relationships. Typically, responses to a standardized hormonal stimulus depend upon reproductive condition, social status and the social context of the stimulus14,42, and most hormone-dependent behavior can be elicited in the complete absence of hormones. Instead of forcing a behavior to be shown, hormones alter thresholds, increasing or decreasing the probability that a behavior will be shown in response to a standard stimulus – they also alter the intensity of the behavior shown. Behavior is also sensitive to a wide range of social and environmental stimuli, some of which act during development to influence behaviors expressed in adulthood33. Changing the expression of hormone receptors39, altering imprinted genes41 and mutational changes in gene activation pathways44 will also modify hormone–behavior relationships. As a result, we can eventually expect a wide range of hormones to be ‘causally’ linked to a complex social behavior, such as parental behavior.

Fig. 2. Schematic endocrinology of fatherhood. Changes in the concentration of hormones implicated in the control of mammalian paternal behavior (Table 1). The generalized pattern represents results from studies in naturally paternal species and our assumption that the underlying neuroendocrine control of parental behavior will be homologous in males and females. Changes are relative to unpaired adult males. Question marks (?) indicate gaps in our current understanding.

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Unpaired</th>
<th>Pair-bonding</th>
<th>Before birth</th>
<th>Immediately after birth</th>
<th>Father-young interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>Max</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Prolactin</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td>Min</td>
<td>Min</td>
</tr>
<tr>
<td>Estradiol</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td>Min</td>
<td>Min</td>
</tr>
<tr>
<td>Progesterone</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td>Min</td>
<td>Min</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td>Min</td>
<td>Min</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td>Min</td>
<td>Min</td>
</tr>
</tbody>
</table>

Table 1. Generalized pattern of changes in the concentration of hormones implicated in mammalian paternal behavior.
Box 2. The role of prolactin
From ring doves to passerine birds, an important role for prolactin in avian parental behavior is well established. In female mammals, altered pituitary prolactin release is the functional end-point of many pheromonal inputs to reproduction (e.g. puberty onset and pregnancy interruption), including maternal care. In males, as well as females, prolactin has access to receptors and functions in key target areas of the brain involved in maternal behavior. Null mutation of the prolactin receptor also impairs maternal behavior.

In naturally paternal species, prolactin correlates with the expression of paternal behavior. In the same way that paternal responsiveness is prolonged following parental experience, prolactin concentrations in experienced fathers remain elevated.

In spite of this evidence, little comparative endocrinology of mammalian prolactin is available. The primary barrier to this research is the extent of interspecific diversity in prolactin sequence. Antibodies rarely crossreact in distinctly related species and antagonists are controversial.

Currently, mammalian studies are restricted to rats, hamsters, sheep and humans, whereas chicken prolactin has been widely useful in avian species. Efforts to overcome these technical barriers should yield exciting new insights into the neuroendocrinology of social behavior.

Conclusions
Recent progress in understanding the behavioral endocrinology of mammalian fatherhood embraces the hypothesis that naturally occurring paternal behavior will be homologous with maternal behavior. It is anticipated that a wide variety of hormones are involved in paternal behavior. Early results show great promise that a biological basis for involved fatherhood will be found and that including the human animal will capture a wide audience. We see this potential as an opportunity to better understand maternal behavior, by studying parental behavior in the absence of pregnancy and lactation; an opportunity to explore the modulatory interactions between hormones and behavior in a relevant social context; and an opportunity to biologically validate the experiences of involved fathers.

Box 3. Men becoming fathers
Recently, the first study of hormone changes in men becoming fathers (Fig. 1) was published. It firmly placed those highly motivated ‘dads’ in the ‘naturally paternal’ hormone responsiveness category.

References

Acknowledgements
I would like to thank three anonymous referees for comments on this article, and A.E. Storey for ongoing discussions about the behavioral endocrinology of fatherhood and for her willingness to venture into human hormone–behavior relationships.
9 Sakaguchi, K. et al. (1998) Induction of brain prolactin receptor long-form mRNA expression and maternal behavior in pup-contacted male rats; promotion by prolactin administration and suppression by female contact. Neuroendocrinology 63, 559–568
20 Gubernick, D.J. et al. (1995) Oxytocin changes in males over the reproductive cycle in the monogamous, biparental California mouse, Peromyscus californicus. Horm. Behav. 29, 59–73
27 Gubernick, D.J. et al. (1994) Individual differences in the mechanisms underlying the onset and maintenance of paternal behavior and the inhibition of infanticide in the monogamous biparental California mouse, Peromyscus californicus. Behav. Ecol. Sociobiol. 34, 225–231
32 Perrigo, G. et al. (1990) A unique neural timing system prevents male mice from harming their own offspring. Anim. Behav. 39, 535–539
37 Bridges, R.S. and Ronsheim, P.M. (1990) Prolactin (PRL) regulation of maternal behavior in rats; bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126, 837–848
39 Young, L. et al. (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400, 768–768
40 Shin, S.H. (1990) Vasopressin has a direct effect on prolactin release in male rats. Neuroendocrinology 34, 55–58
47 Kuo, C.B. et al. (1998) Prolactin receptor antagonists. Endocrine 9, 121–131

Letters to TREE

Correspondence in TREE may address topics raised in very recent issues of TREE, or (occasionally) other matters of general current interest to ecologists and evolutionary biologists. Letters should be no more than 500 words long with a maximum of 12 references and one small figure; original results, new data or new models are not allowed. Letters should be sent by e-mail to tree@current-trends.com. The decision to publish rests with the Editor, and the author(s) of any TREE article criticized in a Letter will normally be invited to reply. Full-length manuscripts in response to previous TREE articles will not be considered.